登陆注册
9460800000014

第14章 水分测定(3)

5.2.3.3说明及注意事项

(1)卡尔·费休法适用于多数有机样品,包括食品中糖果、巧克力、油脂、乳糖和脱水果蔬类等样品;

(2)卡尔·费休法不仅可测得样品中的自由水,而且可测出结合水,即此法测得结果更客观地反映出样品中总水含量。

(3)卡尔·费休试剂的有效浓度取决于碘的浓度。新鲜配制的试剂有效浓度会降低,由于试剂中各组分本身也会有水。主要是因为发生一些副反应,消耗了一部分碘。新配试剂需放置一定时间后才能使用。临用前均需标定,可采用稳定的水合盐和标准水溶液进行标定,常用的水合盐为酒石酸钠二水合物(Na2C4H4O6·2H2O)其理论含水量为15.66%。

(4)滴定终点可用试剂碘本身作为指示剂,试剂中有水存在时,呈淡黄色,接近终点时呈琥珀色,当刚出现微弱的黄棕色时,即为滴定终点,棕色表示有过量碘存在。

容量分析适用于含有1%或更多水的样品,产生误差不大。如测微量水或测深色样品时,常用库伦滴定“永停法”确定终点。

(5)含有强还原性物质,包括维生素C的样品不能测定;样品中含有酮、醛类物质时,会与试剂发生缩酮、缩醛反应,必须采用专用的醛酮类试剂测试。对于部分在甲醇中不溶解的样品,需要另寻合适的溶剂溶解后检测,或者采用卡氏加热炉将水汽化后测定。

(6)固体样品细度以40目为宜,最好用粉碎机而不用研磨,防止水损失。

5.3固形物含量测定

当物料中的水含量很高时,如果蔬、饮料等,为了实际使用方便,通常用可溶性固形物表示,显然:

固形物含量+水含量=100%,或

水含量=100-固形物含量

固形物测定主要有密度法、折光法和干燥法。干燥法同以上介绍的水测定法,即通过加热,将水蒸发掉,最终烘干至恒重。这是绝对法,即需要明确了解固形物的绝对含量时才会使用这种方法。密度法采用密度计或密度瓶测量,密度计法直接用密度计测量并以密度表示固形物浓度,多为工业生产上使用,此法比较粗放。密度瓶法采用标准温度定体积称重,较精确。折光法根据样品中固形物的含量与折光相关的原理进行。以上方法的具体介绍参见相关仪器的使用说明书或用户手册,这里仅介绍折光法的应用。

5.3.1折光法方法提要

在20℃用折光计(图5-9)测量待测样液的折光率,并用折光率与可溶性固形物含量的换算表查得或折光计上直接读出可溶性固形物含量。

5.3.2折光仪

阿贝(Abe)折光仪或其他折光仪:测量范围0~80%,精确度± 0.1%。

5.3.3样品制备

澄清果汁、糖液等,试样混匀后直接用于测定,混浊制品用双层擦镜纸或纱布挤出汁液测定。所有过程都必须定量进行。

(1)新鲜果蔬、罐藏和冷冻制品:取试样的可食部分切碎、混匀(冷冻制品须预先解冻),高速组织捣碎机捣碎,用两层擦镜纸或纱布挤出匀浆汁液测定。

(2)酱体制品:果酱、果冻等,放入烧杯中,加入蒸馏水,用玻棒搅匀,在电热板上加热至沸腾,轻沸2~3 min,放置冷却至室温,然后通过滤纸或布氏漏斗过滤,滤液供测定用。

(3)干制品:把试样可食部分切碎,混匀,放入称量过的烧杯,加入蒸馏水,置沸水浴上浸提30 min,不时用玻璃棒搅动。取下烧杯,待冷却至室温,过滤。

(4)半黏稠制品(果浆、菜浆类):将试样充分混匀,用四层纱布挤出滤液,弃去最初几滴,收集滤液供测试用。

(5)含悬浮物质制品(果粒果汁饮料):将待测样品置于组织捣碎机中捣碎,用四层纱布挤出滤液,弃去最初几滴,收集滤液供测试用。

5.3.4分析步骤

(1)测定前按说明书校正折光仪。

(2)分开折光仪两面棱镜,用脱脂棉蘸乙醚或乙醇擦净。

(3)用末端熔圆之玻璃棒蘸取试液2~3滴,滴于折光计棱镜面中央(注意勿使玻璃棒触及镜面)。

(4)迅速闭合棱镜,静置1 min,使试液均匀无气泡,并充满视野。

(5)对准光源,通过目镜观察接物镜。调节指示规,使视野分成明暗两部,再旋转微调螺旋,使明暗界限清晰,并使其分界线恰在接物镜的十字交叉点上。读取目镜视野中的百分数或折光率,并记录棱镜温度。

(6)如目镜读数标尺刻度为百分数,即为可溶性固形物的百分含量;如目镜读数标尺为折光率,可按表5-4换算为可溶性固形物百分含量。

5.3.5注意事项

同一样品两次测定值之差,不应大于0.5%。取两次测定的算术平均值作为结果,精确到小数点后一位。

需加水稀释的试样,应适当减少加水量,以避免扩大测定误差。

5.4水活度测定

水活度的测定方法很多,有蒸汽压力法、电湿度法、溶剂萃取法、扩散法、测定仪法和近似计算法等,本节介绍最常用的康威(Conway)扩散法和水活度仪法。

5.4.1康威扩散法

5.4.1.1原理

样品在康威氏微量扩散皿(图5-10)的密封和恒温条件下,分别在Aw较高和较低标准的饱和溶液中扩散平衡后,根据样品质量的增加(在较高Aw标准溶液中平衡后)和减少(在较低Aw标准溶液中平衡后)的量,求出样品的Aw值。

5.4.1.2操作步骤

在预先准确称重的铝皿或玻璃皿中,准确称取1 g均匀切碎样品,迅速放入康威氏皿内室中,在康威氏皿的外室预先放入标准饱和试剂5 mL,或标准的上述盐5.0 g,加入少许蒸馏水润湿。一般进行操作时选样3~4份标准饱和试剂(每只皿装一种),其中1~2份的Aw值大于或小于试样的Aw值。然后在扩散皿磨口边缘均匀地涂上一层真空脂或凡士林,加盖密封。在25 ℃±0.5 ℃下放置2 h±0.5 h,然后取出铝皿或玻璃皿,用分析天平迅速称量,分别计算样品每g质量的增减数。表5-6为标准水活度试剂及其25℃时的Aw。

5.4.1.3结果计算

以各种标准饱和溶液25℃时的Aw值为横坐标,每g样品增减数为纵坐标作图,将各点连结成一条直线,此线与横轴的交点即为所测样品的Aw值。或根据以下公式计算。

Aw=bx-ayx-y

式中:a——饱和溶液A的Aw值;

b——饱和溶液B的Aw值;

x——使用饱和溶液A时试样质量的增加量,g;

y——使用饱和溶液B时试样质量的增加量,g。

[例]若某食品样品在硝酸钾中增重7 mg,在氯化钡中增重3 mg,在氯化钾中减重9 mg,在溴化钾中减重15 mg,则通过作图可求得Aw=0.878。

该例中,未告知样品的总质量,故不能用计算法计算结果。

5.4.1.4注意事项

(1)每个样品测定时应做平行试验,操作要迅速,测定误差不得超过0.02;

(2)康威氏(Conway)微量扩散皿密封性要好;

(3)绝大多数样品可在2 h后测定Aw值,但米饭类、油脂类、鱼类则需4 d左右时间才能测定。为此,需加入样品量0.2%的山梨酸防腐剂,并以山梨酸的水溶液作空白;

(4)必须保证饱和溶液饱和度;

(5)先在康威氏皿的外室加饱和溶液,然后再准确称量内室中的样品;

(6)操作要迅速,尤其是称量好样品后,应马上将盛样品的小玻璃皿放入内室,并密封好;

(7)正确涂抹凡士林,位置不对会导致样品被凡士林污染,平衡后样品质量变化错误,应该减重的结果反而表现出增重。

5.4.2水活度计法

5.4.2.1原理

利用氯化钡饱和溶液(Aw=0.901)校正水活度计,测定样品蒸汽压力的变化确定水活度。

5.4.2.2操作

根据仪器使用手册或说明书进行操作。

复习思考题

1.食品中的水存在的形式有哪些?

2.烘箱干燥法测定水分有什么要求?测定结果的误差来源有哪些?

3.试说明蒸馏法测定水分的应用范围。

4.试说明化学反应法(Karl Fischer法)测定水分的原理和应用范围。

5.试说明直接测定固形物的方法和原理。

6.如何测定水活度?

7.说明康威(Conway)扩散法测定水活度的原理和要求。

同类推荐
  • 辉煌60年

    辉煌60年

    2011年是新中国航空工业创建60周年。为弘扬“航空报国、强军富民”的集团宗旨和“敬业诚信、创新超越”的集团理念, 中国航空工业集团公司离退休人员管理局、中国航空报社、中航出版传媒有限责任公司联合举办了“辉煌60年”征文活动, 组织离退休老同志以著书立说的形式, 发掘航空工业的光荣历史。活动得到老同志积极响应, 收到来自集团总部及所属成员单位老同志撰写的征文320余篇。经过专家评审, 评选出一等奖、二等奖、三等奖、优秀奖共计100篇。
  • 食品包装学

    食品包装学

    本书改变了以往常用的按照包装材料、包装技术、包装机械以及典型食品包装这一体系的分类方式,按照食品的类型进行分类编写。书中在介绍了食品包装材料和食品包装原理后,分类详细介绍了肉制品包装、果蔬包装、水产品包装和其他一些食品的包装,最后简要介绍了一部分典型食品的包装标准与法规。本书内容比较丰富,贴近生产实际,适用于食品科学与工程专业或相近专业的大学本科、专科学生作为教材使用,也可供有关研究人员、工程技术人员或包装工程专业的学生或从业人员用作参考。
  • 危机与防范(和谐中华知识文库)

    危机与防范(和谐中华知识文库)

    本书对自然灾害危机、人身安全危机、财产安全危机、心理危机、公共卫生安全危机等方面,阐述了常见生存危机的防范与应对方法。本书旨在通过强化生存意识、提高生存技能、强调珍爱生命,从生存教育的角度,突出生存能力的培养,拓展高校素质教育的内涵。
  • 火箭与长征火箭的故事(征服太空之路丛书)

    火箭与长征火箭的故事(征服太空之路丛书)

    火箭技术是一项十分复杂的综合性技术,主要包括火箭推进技术、总体 设计技术、火箭结构技术、控制和制导技术、计划管理技术、可靠性和质量控制技术、试验技术,对导弹来说还有弹头制导和控制、突防、再人防热、 核加固和小型化等弹头技术。如今,世界各国都加快了向太空进军的步伐,把探测目标投向了更远的 地方,而对火箭的研制是其中不可缺少的一环。我们有理由相信,人类凭借自己的聪明才智,一定能够研制出更先进,飞得更远的火箭,把探测器送到 月球、火星甚至更远的地方。
  • 罗尔斯·罗伊斯的传奇(发动机家族)

    罗尔斯·罗伊斯的传奇(发动机家族)

    丛书全面讲述了罗尔斯·罗伊斯公司的传奇故事,其时间跨度从罗尔斯·罗伊斯公司创业伊始,直至当今。罗尔斯·罗伊斯公司这个品牌是极富魅力的,而这份魅力得益于它的员工和产品。
热门推荐
  • 爱至慕夏

    爱至慕夏

    夏末的流星划过天际,陨落成雨。我站在雨里,一时温暖,一时孤寂。我是佐雨,笑容慵懒,眼神邪魅的佐雨。也许我知道得不多,但偏偏却最懂你,懂你的那些小脾气和不讲道理。诺诺,把手给我,让我带你走出那片夏天的阴翳。
  • 帅哥到本小姐碗里来

    帅哥到本小姐碗里来

    她,乃组织里最可怕的异能者,高智商天才,腹黑狡诈,我行我素;一朝穿越,,她乃丞相的独女,紫璃沐,人前人后的白痴,看她如何玩转异世,走上世界巅峰。风云大陆,分为三国凤溪国虎啸国龙炎国他,乃凤溪国的冷酷王爷,,倾国倾城,从不近女色,绝世天才,连皇帝也敬他三分,唯是对她失了心;他,乃虎啸国的王上却对他,一见倾心,二见倾情,三见无可自拔;他,乃杀手界的传奇,却甘愿在他身边守护她一生一世;.....................................................................
  • 大小姐倾绝天下

    大小姐倾绝天下

    传说中的废柴千代攸希,一去懦弱平凡身姿,神兽魔兽收之,炼丹习武惊之,成为奇喑大陆人人敬畏的魔女天才,战神王子?是她准夫君!夜雪宫?是她与他一手建立!绝煞门、噬血宫、乃至葬心教?又能奈她如何?人人敬畏的战神三王子,冷酷无情,腹黑狡诈,独对她宠爱倍加,江湖中神出鬼没的毒手阎王、神偷靖蝶、冷酷无情的杀手门主,是她最真挚的伙伴!跟我斗,你们有资本吗?命运的轮盘已经转动,血人,兽人以及那末远之地的丧尸相继出现,他们能否hold住?千年前,古人大战隐藏了什么?当一切尘埃落定,他们又该何去何从?【完结书《傲世凰妃:废柴王爷太腹黑》《妖尊天下:绝色九小姐》】
  • 如渊豪门,总裁别爱我

    如渊豪门,总裁别爱我

    恨到骨髓有多恨?当晚,他以莫须有的罪名逼她在他挚爱女子的墓前吞含剧毒的“相思豆”,要她血债血偿,母亲含冤之死成谜,她的调查他却层层介入阻止。他杀她在乎之人,只为看她如身在炼狱。
  • 韩娱之姐妹们的修罗场

    韩娱之姐妹们的修罗场

    喂,听说过“史上最大放送事故”事件吗?哎,我可是在场观众之一。真的吗?真像电视上那么火爆吗?比你想象的还要激烈。呀,赶紧给我讲讲。嗯,听我慢慢讲吧??
  • 总裁大人:我们不是一路人

    总裁大人:我们不是一路人

    呆萌的白宁宁无数次的无视总裁江辰希,甚至多次开口说:“总裁大人,我们不是一路人,所以麻烦您滚远点。”以至于让江辰希自信心受损,不得不拿出强硬的手段来对付那个不知好歹的人。
  • 腹黑帝王呆萌乖乖女

    腹黑帝王呆萌乖乖女

    为了还报恩情,她以血立誓:余此生定不负你!为了偿还旧事,他用命抵债:朕用命护你余世周全!“皇上,听说外来使节都很傻逼,我们去讹他一笔怎么样?”他微微一笑,捧起她的脸,“貌似妃妃很美味,先让朕尝一口怎么样?”混蛋的狗屁皇帝!还不如我用来暖床的狗狗呢!
  • 始于处见止于终老

    始于处见止于终老

    你若赐我一段浮华,我便许你满世繁花。对他来说,她爱他便是浮华,你若爱我,若愿意,我的就是你的,满世的繁花,你要,我便许。
  • 哑巴之人蛇爱恋

    哑巴之人蛇爱恋

    我是作者姗魅,希望大家多多支持本作品^_^
  • 缘聚梦境

    缘聚梦境

    顾飞和徐静雯小时候就青梅竹马,可是随着他们渐渐长大,他们的距离和差距也越来越大,距离和时间是爱情的克星吗?爱与不爱,如同你对着镜子看自己,它很难说得清!顾飞从负债累累成为商界翘楚,他将经历什么?面对生活中接二连三出现的女子,他会做何抉择?徐静雯将情归何处?她最后将意识到什么?