登陆注册
8928400000014

第14章 分子生物学与基因工程导论(1)

分子生物学与基因工程是当今生物科学研究中发展最活跃的学科之一。近年来人们在人类基因组计划、功能基因的克隆与分析、重组DNA技术、分子疫苗开发、基因诊断与治疗等领域中取得了许多令人瞩目的成果,分子生物学和基因工程已不单单成为生物学的基础知识,而且已成为生物科学未来发展的优先研究领域与技术,它决定着整个生命科学研究的发展方向。本章节对分子生物学与基因工程的研究现状与发展趋势进行简要的阐述。

一、分子生物学与基因工程的含义及主要研究内容

分子生物学是从分子水平研究生命本质的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其他学科广泛交叉与渗透的重要前沿领域。偏重于核酸的分子生物学,主要研究基因或DNA的复制、转录、表达和调节控制等过程,其中也涉及与这些过程有关的蛋白质和酶的结构与功能的研究。分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。

这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育及代谢调节控制系统。阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。

而基因工程是分子生物学的重要内容,也是理论部分的延伸与实践,也叫基因操作、遗传工程,或重组体DNA技术。它是一项将生物的某个基因通过基因载体运送到另一种生物的活性细胞中,并使之无性繁殖(称之为“克隆”)和行使正常功能(称之为“表达”),从而创造生物新品种或新物种的遗传学技术。一般说来,基因工程专指用生物化学的方法,在体外将各种来源的遗传物质(同源的或异源的、原核的或真核的、天然的或人工合成的DNA片段)与载体系统(病毒、细菌质粒或噬菌体)的DNA结合成一个复制子。这样形成的杂合分子可以在复制子所在的宿主生物或细胞中复制,继而通过转化或转染宿主细胞、生长和筛选转化子,无性繁殖使之成为克隆。然后直接利用转化子,或者将克隆的分子自转化子分离后再导入适当的表达体系,使重组基因在细胞内表达,产生特定的基因产物。

根据分子生物学的定义与含义,其研究内容主要包括以下三个方面:(1)核酸的分子生物学:主要研究核酸的结构及其功能。由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(molecular genetics)是其主要组成部分。由于20世纪50年代以来的迅速发展,该领域已形成了比较完整的理论体系和研究技术,是目前分子生物学内容最丰富的一个领域。研究内容包括核酸/基因组的结构、遗传信息的复制、转录与翻译,核酸存储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。遗传信息传递的中心法则(central dogma)是其理论体系的核心。(2)蛋白质的分子生物学:主要研究执行各种生命功能的主要大分子——蛋白质的结构与功能。尽管人类对蛋白质的研究比对核酸研究的历史要长得多,但由于其研究难度较大,与核酸分子生物学相比发展较慢。近年来虽然在认识蛋白质的结构及其与功能关系方面取得了一些进展,但是对其基本规律的认识尚缺乏突破性的进展。(3)细胞信号转导的分子生物学:主要研究细胞内、细胞间信息传递的分子基础。构成生物体的每一个细胞的分裂与分化及其他各种功能的完成均依赖于外界环境所赋予的各种指示信号。在这些外源信号的刺激下,细胞可以将这些信号转变为一系列的生物化学变化,例如蛋白质构象的转变、蛋白质分子的磷酸化以及蛋白与蛋白相互作用的变化等,从而使其增殖、分化及分泌状态等发生改变以适应内外环境的需要。信号转导研究的目标是阐明这些变化的分子机理,明确每一种信号转导与传递的途径及参与该途径的所有分子的作用和调节方式以及认识各种途径间的网络控制系统。信号转导机理的研究在理论和技术方面与上述核酸及蛋白质分子有着紧密的联系,是当前分子生物学发展最迅速的领域之一。

二、分子生物学与基因工程的发展历程

根据历史事件及其在分子生物学与基因工程领域中的重要性,分子生物学与基因工程的发展历程可人为地分成以下三个阶段:

(一)准备和酝酿阶段

19世纪后期到20世纪50年代初,是现代分子生物学诞生的准备和酝酿阶段。在这一阶段产生了两点对生命本质认识上的重大突破:

1.确定了蛋白质是生命的主要基础物质

19世纪末,Buchner兄弟证明酵母无细胞提取液能使糖发酵产生酒精,第一次提出酶(enzyme)的名称,酶是生物催化剂。20世纪20-40年代提纯和结晶了一些酶(包括尿素酶、胃蛋白酶、胰蛋白酶、黄酶、细胞色素C、肌动蛋白等),证明酶的本质是蛋白质。随后陆续发现生命的许多基本现象(物质代谢、能量代谢、消化、呼吸、运动等)都与酶和蛋白质相联系,可以用提纯的酶或蛋白质在体外实验中重复出来。在此期间对蛋白质结构的认识也有较大的进步。1902年,EmilFisher证明蛋白质结构是多肽;40年代末,Sanger创立二硝基氟苯(DNFB)法、Edman发展异硫氰酸苯酯法分析肽链N端氨基酸;1953年,Sanger和Thompson完成了第一个多肽分子——胰岛素A链和B链的氨基酸全序列分析。由于结晶X-射线衍射分析技术的发展,1950年Pauling和Corey提出了α-角蛋白的α-螺旋结构模型。所以在这一阶段对蛋白质一级结构和空间结构都有了认识。

2.确定了生物遗传的物质基础是DNA

虽然1868年Miescher就发现了核素(nuclein),但是在此后的半个多世纪中并未引起重视。20世纪20-30年代已确认自然界有DNA和RNA两类核酸,并阐明了核苷酸的组成。由于当时对核苷酸和碱基的定量分析不够精确,得出DNA中A、G、C、T含量是大致相等的结果,因而曾长期认为DNA结构只是“四核苷酸”单位的重复,不具有多样性,不能携带更多的信息,当时对携带遗传信息的候选分子更多的是考虑蛋白质。40年代以后实验的事实使人们对核酸的功能和结构两方面的认识都有了长足的进步。1944年,Avery等证明了肺炎球菌转化因子是DNA;1952年,Hershey和Chase用DNA35S和32P分别标记T2噬菌体的蛋白质和核酸,感染大肠杆菌的实验进一步证明了是遗传物质。在对DNA结构的研究上,1949-1952年Furbery等的X-衍射分析阐明了核苷酸并非平面的空间构像,提出了DNA是螺旋结构;1948-1953年,Chargaff等用新的层析和电泳技术分析组成DNA的碱基和核苷酸量,积累了大量的数据,提出了DNA碱基组成A=T、G=C的Chargaff规则,为碱基配对的DNA结构认识打下了基础。

【知识拓展】

英国生物化学家弗雷德·桑格尔(Fred(Frederick)Sanger),1918年8月13日出生,分别获得1958年和1980年诺贝尔化学奖。他是同一领域内两次获奖的第二人,更关键的是,两次获奖理由都可归结为:测序。并且,他是目前唯一在世的两次获得诺贝尔奖的人。

1958:弗雷德·桑格尔发明酶法测定人胰岛素序列,从而确定胰岛素的分子结构,开创了蛋白质测序的领域。

1980:弗雷德·桑格尔、沃尔特·吉尔伯特共同荣获诺贝尔化学奖。他们的贡献在于:分别使用不同的方法测定DNA的序列。Sanger法后来成为主流,并用于人类基因组计划(HGP)的测序。

【知识拓展】

美国化学家莱纳斯·鲍林(Linus Pauling,1901-1994),分别荣获1954年诺贝尔化学奖和1962年诺贝尔和平奖。他是目前为止唯一一个两次单独获得诺贝尔奖的人。

1954:莱纳斯·鲍林独享诺贝尔化学奖。他的贡献在于阐释化学键的本质,并将其应用于解释复杂物质的结构。

1962:莱纳斯·鲍林独享诺贝尔和平奖。他的事迹是,反对核武器实验、核武器扩散、核武器使用。诺贝尔奖委员会评价为:“Linus Carl Pauling,who ever since 1946 has campaigned ceaselessly,not only against nuclear weapons tests,not only against the spread of these armaments,not only against their very use,but against all warfare as a means of solving international conflicts.”

(二)建立和发展阶段

这一阶段是从50年代初到70年代初,以1953年Watson和Crick提出的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑开创了分子遗传学基本理论建立和发展的黄金时代。DNA双螺旋发现的最深刻意义在于:确立了核酸作为信息分子的结构基础;提出了碱基配对是核酸复制、遗传信息传递的基本方式;从而最后确定了核酸是遗传的物质基础,为认识核酸与蛋白质的关系及其在生命中的作用打下了最重要的基础。在此期间的主要进展包括:

1.遗传信息传递中心法则的建立

在发现DNA双螺旋结构的同时,Watson和Crick就提出DNA复制的可能模型。其后在1956年Kornberg首先发现DNA聚合酶;1958年Meselson及Stahl用同位素标记和超速离心分离实验为DNA半保留复制模型提出了证明;1968年Okazaki(冈畸)提出DNA不连续复制模型;1972年证实了DNA复制开始需要RNA作为引物;70年代初获得DNA拓扑异构酶,并对真核DNA聚合酶特性做了分析研究;这些都逐渐完善了对DNA复制机理的认识。

在研究DNA复制将遗传信息传给子代的同时,提出了RNA在遗传信息传到蛋白质过程中起着中介作用的假说。1958年Weiss及Hurwitz等发现依赖于DNA的RNA聚合酶;1961年Hall和Spiegelman用RNA-DNA杂交证明mRNA与DNA序列互补;逐步阐明了RNA转录合成的机理。

在此同时认识到蛋白质是接受RNA的遗传信息而合成的。50年代初,Zamecnik等在形态学和分离的亚细胞组分实验中已发现微粒体是细胞内蛋白质合成的部位;1957年,Hoagland、Zamecnik及Stephenson等分离出tRNA并对它们在合成蛋白质中转运氨基酸的功能提出了假设;1961年,Brenner及Gross等观察了在蛋白质合成过程中mRNA与核糖体的结合;1965年,Holley首次测出了酵母丙氨酸tRNA的一级结构;特别是在60年代Nirenberg、Ochoa以及Khorana等几组科学家的共同努力下破译了RNA上编码合成蛋白质的遗传密码,随后研究表明这套遗传密码在生物界具有通用性,从而认识了蛋白质翻译合成的基本过程。

上述重要发现共同建立了以中心法则为基础的分子遗传学基本理论体系。1970年,Temin和Baltimore又同时从鸡肉瘤病毒颗粒中发现以RNA为模板合成DNA的反转录酶,进一步补充和完善了遗传信息传递的中心法则。

同类推荐
  • 情感旋律

    情感旋律

    我们中小学生必须要加强阅读量,以便提高自己的语文素养和写作能力,以便广开视野和见识,促进身心素质不断地健康成长。但是,现在各种各样的读物卷帙浩繁,而广大中小学生时间又十分有限,因此,找到适合自己阅读的读物,才能够轻松快速地达到阅读的效果。
  • 必听的数学故事

    必听的数学故事

    《必听的数学故事》是《中小学生数学爱好培养》系列之一:为了培养中小学生对数学的兴趣,使同学们能够早日迈入数学的殿堂,我们特地编写了这套'中小学生数学爱好培养'丛书,本套丛书根据具体内涵进行相应归类排列,有数学趣闻、数学密码、数学之谜、数学智力,以及数学游戏、数学闯关等内容,并配有相应的答案,具有很强的趣味性、实用性、可读性和知识性,是中小学生培养数学爱好的配套系列读物。
  • 构建美的课堂

    构建美的课堂

    《构建美的课堂》,正是上述思考与实践的成果。该书从“学科本质美”、“教学过程美”、“课堂氛围美”三个部分,通过列举教学案例,提供教学策略,引导教师和学生一起去发现、感悟、欣赏其中的“美”,从而实现提高儿童审美情趣和审美能力的教育目标。这本书将“美育”与学科、教学、课堂进行了有机的结合,涵盖了教育教学的基本环节,给儿童提供了浸润式的“美育”氛围。我们有理由相信,在这种氛围下,定二小的孩子们一定会成长为“言行皆雅、气韵俱佳”的少年儿童。
  • 社会调查研究方法

    社会调查研究方法

    本教材可供高等院校社会学专业教学主干课程使用,同时也可作为各相关专业的本科生、研究生以及从事教学科研、政策研究、市场调查和对社会调查研究方法感兴趣的同仁们进行理论研究、方案设计、现场实施、资料分析、撰写报告等教学科研与咨询服务的参考用书。
  • 好学生是这样炼成的

    好学生是这样炼成的

    本书汇集了作者从一句话作文到日积月累的日记、感想和随笔的文集,记录了其18年来自由行走的生命轨迹,包括“发现自我”“聆听自然”“诗路花语”“触摸美丽”等十二章,内容没有泛泛而谈的学习秘诀或捷径,有的仅是作者在成长路上的感悟与思考。
热门推荐
  • 徐大仙

    徐大仙

    徐大仙是怎样一个人?没有人能说得清、猜得透。徐大仙的朋友们觉得他是一个仗义、豪爽、大方的人,和他这样的人交朋友无疑是一件幸事。徐大仙的仇人觉得他是一个魔王,一个恶鬼,一个令人寝食难安的人,他的存在就是对这些人无休无止的惩罚。在情人的眼里,他是一个调皮、帅气、多情的孩子。他懂女人,会体贴女人,会温情浪漫,会插花吟诗,也会洗衣做饭。无疑每一个情窦初开的少女都不会拒绝他这样的男人。然而真正了解徐大仙的人,却知道他只是一个醉鬼,一个迷醉于理想的男人。孤星月曾经说过:“如果这个世界还有一个不该死的人,那么这个人一定是徐大仙!”
  • 绝世乘风

    绝世乘风

    这里没有绚丽的魔法和霸道的斗气,有的只是繁衍到巅峰的净气,两种相克属性的净气相互交织,能形成一个超级飓风漩涡,普通人陷入其中,瞬间被磨成骨粉。流风在婆婆的教导下,一步步成长,解家族危机,约斗紫岩宗,战霸天霾帝...最终蜕变成一名绝世乘风。
  • 她的演艺生涯

    她的演艺生涯

    本书分为两部,这是第一部。第二部已经开始写了(虽然只是写在大大的本子上)。好了,这本书,呃。。。第一部…早恋情节诶,别介意哈!女主:林绫。男主:张泓宸。内容大大就不透露了,大家自己品味咯!还有就是,大大可能更新的很慢,因为大大是学生党,大家可以跟着进度看,也可以养肥了再看。
  • 福妻驾到

    福妻驾到

    现代饭店彪悍老板娘魂穿古代。不分是非的极品婆婆?三年未归生死不明的丈夫?心狠手辣的阴毒亲戚?贪婪而好色的地主老财?吃上顿没下顿的贫困宭境?不怕不怕,神仙相助,一技在手,天下我有!且看现代张悦娘,如何身带福气玩转古代,开面馆、收小弟、左纳财富,右傍美男,共绘幸福生活大好蓝图!!!!快本新书《天媒地聘》已经上架开始销售,只要3.99元即可将整本书抱回家,你还等什么哪,赶紧点击下面的直通车,享受乐乐精心为您准备的美食盛宴吧!)
  • 千金撩人

    千金撩人

    一场阴谋车祸,华丽重生,原本高傲不可一视的千金大小姐,沦为了苏家最不受宠的私生女,苏氏危机,她被推到了风口浪尖。他是高高在上的集团总裁,霸道狠戾,可以只手遮天,视女人如衣服,直到遇到了她。于她而言,这场婚姻是一场报复,有名无实。对他来说,这场婚姻是一场交易,各取所需。当她的守身如玉在被他吃干抹净的那一刻,失了身,也失了心,她还能否从这场契约婚姻中全身而退?几年后再次相见,她的身边有着和他如出一辙的儿子,他将她逼到墙角,欺身而上。“霍少,请您自重!”她对上他幽深的双眸。“自重?你连我的儿子也生了,还需要自重吗?可别忘记了,你是霍太太!”他,从来没有同意离婚!
  • 孤君一指

    孤君一指

    一个尚且出生的孩子,莫名就背负了许多难以承受苦难,先为孝,还是义,亦或情?当孝义情同时纠缠,裘三该如何自处?且看裘三一人如何用时间和智慧一指化解这重重难题。
  • 萌娘战争演义

    萌娘战争演义

    这是一个由强大而美丽的姬武神为主导的世界,她们担任着国家的元首,是战场的主宰。而在某一天,我们的主角楚天歌作为世界上唯一一位男性武神诞生了,成为了万花丛中一点绿。他生而不同,注定非凡。玄幻元素可以有,历史元素可以有,机战元素可以有,炮姐的超电磁炮可以有,卡卡西的雷切可以有,艾尼路的响雷果实可以有……..,总之,进来看看你们就知道了。
  • 妙法莲华经马明菩萨品

    妙法莲华经马明菩萨品

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 让我守候着她

    让我守候着她

    爱情可能就是这么简单,在不知不觉中孕育,却也是种忘不了她,永远忘不了。单纯的爱恋,只是因为曾经有着共同的话语。不忍心离别,不知道怎样抉择,不明白怎么了。我爱你,原来我是这样的单纯
  • 易烊千玺之永远的陪伴

    易烊千玺之永远的陪伴

    千玺刚从韩国回来,就上学了在那了碰见了文雅莉成了一对欢喜冤家。与她在校园里发生了一段爱情故事,后因为种种原因分手后。四年后再次见面会发生什么请大家望下看!