自1895年X射线发现以后,人们通过实验研究逐步探明了它的很多性质。但在十几年内对于它的本质是什么,是电磁波还是粒子流,物理学家们一直争议不休。20世纪初,劳厄详细研究了光波通过光栅的衍射理论;厄瓦尔则以可见光通过晶体的行为作为他博士论文的研究课题。一天,厄瓦尔把论文拿去向劳厄请教。
这时,准确测定阿佛伽德罗常数的问题不久前已经解决。根据已知的原子量、分子量、阿佛伽德罗常数和晶体的密度等,可以估计出晶体中一个原子或分子所占空间的体积及粒子间的距离。当劳厄发现X射线的波长和晶体中原子间距二者数量级相同之后,他产生了一个非常重要的思想:如果X射线确实是一种电磁波,如果晶体确实如几何晶体学所揭示的具有空间点阵结构,那么,正如可见光通过光栅时要发生衍射现象一样,X射线通过晶体时也将发生衍射现象,晶体可作为射线的天然的立体衍射光栅。于是,弗里德里希和克尼平就以五水合硫酸铜晶体为光栅进行了劳厄推测的衍射实验。经过多次失败,终于得到了第一张X射线衍射图,初步证实了劳厄的预见,于1912年5月4日宣布他们实验成功。
接着劳厄等人又以硫化锌、铜、氯化钠、黄铁矿、荧石和氧化亚铜等立方晶体进行实验,都得到了衍射图。于是,晶体X射线衍射效应被发现了。这一重大发现一举解决了三大问题,开辟了两个重要研究领域。第一,它证实了X射线是一种波长很短的电磁波,可以利用晶体来研究X射线的性质,从而建立了X射线光谱学;并且对原子结构理论的发展也起了有力的推动作用。第二,它雄辩地证实了几何晶体学提出的空间点阵假说,晶体内部的原子、离子、分子等确实是做规则的周期性排列,使这一假说发展为科学理论。第三,它使人们可利用X射线晶体衍射效应来研究晶体的结构,根据衍射方向可确定晶胞的形式和大小,根据衍射强度可确定晶胞的内容(原子、离子、分子的分布位置),这就导致了一种在原子——分子水平上研究化学物质结构的重要实验方法——X射线结构分析(即X射线晶体学)的诞生。
在上述劳厄发现的基础上,英国人布拉格父子以及莫斯莱和达尔文为X射线晶体结构分析的建立做了大量工作。从此,化学产生了一个新的分支——X射线晶体学。
应用X射线晶体结构分析方法于化学物质的结构研究,使现代结晶化学迅速兴起,它对有机结晶化学的发展,对蛋白质、核酸等生物高分子结构的研究,都起了巨大作用。