登陆注册
6476700000003

第3章 微生物工程发展简史

一、传统(古老)发酵技术

微生物学诞生于19世纪50年代,但人类利用微生物的实践却可追溯到原始人类的生活期间。远在人类的穴居时代,人们就发现吃剩并经过贮存后的兽肉比鲜肉的味道更好,过熟的或开始有些腐烂的果子可制得醉人的饮料。肉类的贮存和酒类的酿造是人类利用微生物制造生物产品的开端,只是当时人们并不知道这些都是微生物发酵作用的结果。

古埃及人在公元前40世纪时开始用经发酵的面团制作面包,公元前20世纪已掌握了用裸麦制作啤酒的技术;公元前25世纪古巴尔干人开始制作酸奶;公元前20世纪古亚述人已会用葡萄酿酒;公元前17世纪古西班牙人曾用类似目前细菌浸取铜矿的方法获取铜。我国传统发酵的历史同样悠久,用黏高粱(秫)造酒始于第一个奴隶制朝代――夏代的初期(迄今约4000年);在3500多年前的商代,开始了用人畜的粪便和秸秆、杂草等沤制堆肥;在3000多年前的商代后期,人们发现用发了霉的豆腐可以治外伤;在2000多年前的汉武帝时代,开始有了葡萄酒;白酒的起源,当在元朝以前。

对照前述微生物(发酵)工程的定义,上述生产实践活动都应归属于微生物发酵技术的范畴。当然这些实践是只知其然而不知其所以然的经验活动,并没有上升到理论,更没有以理论来指导和提高生产实践,因此在其后相当长的历史时期没有获得大的进展。尽管这样,这些生产实践还是十分可贵的,因为它为其后微生物发酵工程的建立创造了条件。

二、近代发酵技术的建立(纯培技术的建立)

微生物的发现和发酵技术的建立与显微镜的诞生是密不可分的。1590年荷兰人詹生(Z。Janssen)最早制作了显微镜,但因放大倍数的限制而无法观察到微生物的活动。1665年英国人胡克(R。Hooke)制作的显微镜观察到了霉菌,还观察到了植物切片中存在胞粒状物质,因而把它称为细胞(cell),此名称一直沿用至今。1680年荷兰人列文霍克(A。VanLeeuwenhoek)制成了能放大200~300倍的显微镜,观察了污水、牙垢、腐败有机物等,直接看到了微小生物,并对杆菌、球菌、螺旋菌等作了相当正确的描述,为人类进一步了解微生物创造了条件,并为近代发酵技术的建立奠定了基础。

在显微镜诞生后的200年间,人们一直在进行着各种各样的微小生物的观察,但并没有把微生物的活动与发酵联系起来。直到19世纪60年代,法国人巴斯德(L。Pasteur)才揭示了发酵的秘密,认识到发酵是由微生物的活动引起的。他发现了加热的肉汁不发酵,不加热时则产生发酵,由此提出了一种科学的消毒方法――巴斯德消毒法,即将食品、牛乳和饮料酒等加热至60并维持一段时间后可杀死其中的微生物,防止酸变与腐败。时至今日,这种既可杀死营养细胞又不明显破坏食品和饮料营养成分的消毒方法仍在广泛应用。他接连对酒精发酵、乳酸发酵、葡萄酒酿造和食醋制造等各种发酵现象进行了研究。1857年他明确指出酒精是酵母细胞生命活动的产物,并在1863年进一步指出所有的发酵都是微生物作用的结果,而不同的微生物引起不同的发酵。

巴斯德的发现使人类认识了微生物与发酵的关系,但他没有建立纯粹培养技术,即只含一种微生物的培养方法。19世纪末,德国人科赫(R。Koch)首先应用固体培养基分离微生物。1881年他与他的助手们发明了加入琼脂的固体培养基,此为琼脂培养基的起源。Petri(皮特里)创造了一种“皮式培养皿”,供平板培养之用;在平皿中用接种针蘸上混合菌液在固体培养基表面划线,经培养后即可获得由单个细胞长成的菌落,此种方法一直沿用至今。与此同时,丹麦人汉逊(Hansen)研究成功了啤酒酵母的纯粹培养法,并于1878年确定了“汉逊稀释法”纯粹培养原理。1881年Jargensen采用“汉逊稀释法”选择优良酵母菌株用于啤酒发酵,由此揭开了人类有目的地分离有益微生物来生产所需产品的序幕。

微生物纯培技术的建立,开创了人为控制微生物的时代,促进了近代微生物发酵工业的形成。首先,通过上述技术的应用,改进了发酵管理工程技术,发明了简便的密闭式发酵罐,初步建立了人工控制环境条件的发酵系统,使啤酒、葡萄酒、酱油等生产的腐败现象大大减少,生产规模和发酵效率不断提高,并逐渐由手工作坊向大型工业化生产转变。在此基础上,逐渐建立了丙酮、丁醇、甘油、酒精、有机酸、固体酶制剂等工业,至20世纪20年代,近代微生物发酵工业已基本形成。

在近代微生物发酵工业中,主要的发酵产品为饮料酒、有机溶剂和多元醇等厌氧发酵产品,有机酸、粗酶制剂(包括中国的酒曲)等好氧微生物的发酵培养产品的生产则主要采用固态培养法和表面培养法。1879年马奎阿特(Marquardt)根据巴斯德效应理论(在有氧条件下酵母的繁殖速度加快,而酒精的产率下降,这种通风抑制酒精发酵的现象称为巴斯德效应),首先使用通气法生产酵母。随后,丹麦和德国的科学家提出了连续补料培养酵母的方法,使酵母产量大大增加。到目前为止,这是一种能生产大量酵母菌体而不产生大量酒精的惟一方法。20世纪70年代后,连续补料的培养方法被其他微生物工业广泛采用,可用来消除底物抑制和提高产物的转化率。

三、青霉素与好气培养技术

青霉素的发现,不仅开创了微生物产品在医药方面的应用,同时开创了好气发酵工程,促进了微生物工业的迅速发展,是微生物发酵工业的第一次技术革命。

1928年,弗莱明(A。Fleming)在研究金黄色葡萄球菌时发现了一个奇怪的现象。在一个偶然被青霉菌所污染的培养皿中,被青霉菌污染部分周围的葡萄球菌被杀死,形成透明圈。弗莱明分离出这种青霉菌株并加以培养,从中提取出了一种能杀死金黄色葡萄球菌的化学物质,即青霉素。后来他提取的少量青霉素成功地治愈了一名遭到感染的伤病员。

由于青霉素是微生物所产生的次级代谢产物,其产量远比乙醇、有机酸等初级代谢产物低,且青霉菌为好氧微生物,当时只能采用表面培养法生产,因此大规模生产存在很多困难。第二次世界大战的爆发,大量伤员需要一种比当时磺胺类药物更为有效和更为安全的药物来治疗外伤炎症及其继发性传染病,从而促进了青霉素等微生物药物的研究与发展。在英美许多科学家的共同努力下,至20世纪40年代建立了深层液体通风培养技术(包括无菌空气制备技术和通风机械搅拌发酵罐的发明),并在辉瑞(Phizer)药厂建立了一座具有14个约26m3发酵罐的青霉素生产车间。1945年,弗莱明等因发明和开发青霉素而被授予诺贝尔医学奖。我国第一座生产青霉素的工厂于1954年在上海建成投产。

青霉素的工业化生产,开辟了上百种新的抗生素和其他次级代谢产物的工业微生物产品的开发。同时,在其基础上发展起来的好气培养技术,被很快应用于有机酸、酶制剂、氨基酸等初级代谢产物的生产,从而取代原来落后的固体或表面发酵方式,并由此诞生了一个新的学科――微生物发酵工程。

四、人工诱变育种与代谢控制技术

随着生物化学和微生物遗传学的发展,促进了20世纪60年代氨基酸、核苷酸等微生物工业的建立。1955年,日本微生物学者木下祝郎成功地用谷氨酸棒杆菌(Corynebacterium glutamicum)发酵生产获得了谷氨酸,以后鸟氨酸(1957)、赖氨酸(1958)、异亮氨酸(1959)、缬氨酸(1960)、高丝氨酸(1960)等相继投产,目前几乎所有的氨基酸均可用微生物发酵法生产。氨基酸发酵的迅速发展是与巧妙地采用了对“营养缺陷型”突变株的筛选方法分不开的。所谓营养缺陷型菌株(auxotrophic mutant)是指自己不能产生生长所必需的物质,而必须要外加这些物质后才能生长的菌株,可以通过诱变使正常的菌株突变为营养缺陷型菌株。一个正常的微生物往往能同时产生多种氨基酸,若通过诱变的手段使此菌株产生其他氨基酸途径中的有关酶缺失,而仅保留生产甚至强化目标氨基酸途径的酶,那么这一菌株就会单一地形成所需要的目标氨基酸了。

但应注意的是在培养营养缺陷型菌株生产目标氨基酸时必须要加入适量的这一菌株自己不能合成的氨基酸,否则它就不可能生长。当然,也可巧妙地使用合适的天然培养基,以提供其必需的氨基酸。

在营养缺陷型菌株选育基础上发展起来的代谢控制技术,是以动态生物化学和微生物遗传学的理论为基础,将微生物进行物理或化学诱变,得到适合于生产某种产品的突变株,再在人工控制条件下培养,即可选择性地大量生产人们所需的物质。代谢控制技术最初应用于氨基酸生产菌的选育,后来被广泛应用于各种微生物产品生产菌种的选育,其选择标记包括营养缺陷型、药物抗性、结构类似物抗性、产物抗性、病毒抗性、温度敏感、耐高渗和噬菌体抗性等等。人工诱变育种与代谢控制技术的建立,使人们可以有目的地改良和筛选微生物菌种,以获得较高产量,是微生物发酵工业的第二次技术革命。自20世纪60年代开始至70年代末,原有微生物产品的生产水平和产量不断提高,新的微生物发酵产品,包括氨基酸、核苷酸、维生素、新的抗生素、新的有机酸、新型酶制剂等不断涌现,形成了近代微生物工业发展的全盛时期。与此同时,核酸酶的生产和分子生物学的形成,为基因工程的建立和现代生物技术的形成创造了条件。

五、基因工程与克隆技术

1933年美国的遗传学家摩尔根(T。H。Morgan)创立了基因学说;1944年美国微生物学家阿凡莱(O。T。Avery)用实验证明了基因的化学本质是脱氧核糖核酸DNA;1953年美国的华生(J。D。Watson)和克里克(F。H。Crick)发现DNA的双螺旋结构,即DNA分子是由两条互补的多核苷酸链以A(腺嘌呤)-T(胸腺嘧啶)和G(鸟嘌呤)-C(胞嘧啶)碱基配对的方式缠绕而构成,为DNA重组奠定了基础。1973年美国的科亨(S。N。Cohen)和波依耳(H。W。Boyer)等首次在实验室中实现了基因转移,他们将分别编码卡拉霉素和四环素抗性基因的两种质粒进行酶切,连接后将其重组的DNA分子转化大肠杆菌,结果发现某些转化菌落兼有上述两种抗生素的抗性,从而第一次成功地获得基因的克隆。此后全世界各地的研究人员很快发展出大量基因分离、鉴定和克隆的方法,不仅构建出高产量的基因工程菌,还使微生物生产出它们本身不能产生的外源蛋白质,包括植物、动物和人类的多种活性蛋白。1976年,美国第一家基因工程公司成立。1982年,美国的Eli-Lilly药厂将第一个商品基因工程产品――胰岛素投放市场。

基因工程技术的应用是微生物发酵工业的第三次技术革命,它使人们可以按照自己的意志,改良或创建微生物新种,以生产出各种特定的微生物产品,或提高现有微生物产品的产量。自20世纪80年代以来,已有数百种基因工程产品相继问世,其中包括各种疫苗、单克隆抗体、免疫调节剂、激素、医疗用酶和活性蛋白等自然微生物所不能生产的生物制品。

同类推荐
  • 教你制作舰船模型(培养学生动手能力小丛书)

    教你制作舰船模型(培养学生动手能力小丛书)

    《培养学生动手能力小丛书:教你制作舰船模型(最新版)》是一本自然科学类读物,《培养学生动手能力小丛书:教你制作舰船模型(最新版)》有具体的操作过程和实践步骤。《培养学生动手能力小丛书:教你制作舰船模型(最新版)》不仅能丰富青少年朋友课余生活,提升其动手能力,同时也能够让其理解能力和动手能力得到协调发展,从而成长为社会主义现代化建设需要的复合型人才。
  • 史前生物与失落文明

    史前生物与失落文明

    《史前生物与失落文明》分上下两篇分别介绍了一些史前生物和消失的文明。主要内容包括:遥远的太古代;元古代的生命;生命蓬勃发展的古生代;承前启后的中生代等。
  • 非公有制经济组织思想政治工作研究

    非公有制经济组织思想政治工作研究

    本书是中共兰州市委为开展非公经济组织思想政治工作提供指导性、理论性、权威性、借鉴性的读物。
  • 课外名篇

    课外名篇

    读名著,更要读名篇,精彩纷呈的名家名篇独到精辟的名师导读实战备考的经典素材。精彩纷呈的名家名篇,独到精辟的名师导读,实战备考的经典素材,真材实料打通语文读写。
  • 医用大学语文

    医用大学语文

    本书以文学发展史为线索,从中国古代文学、中国现当代文学及外国文学中精选优秀作家作品和医学特色典章。
热门推荐
  • 洛水剑心

    洛水剑心

    我有故事,你有酒吗?我有江湖,你有剑吗?这个江湖有美人,有大侠这个江湖有恩怨,有情仇当岳之秀迈入江湖的那一刻,洛国几十年起伏的画卷就这样慢慢的拉开了帷幕。铺开的画卷将江湖三代风云人物的起起落落,将洛国百年的风雨尽揽其中。
  • 玩世盗名

    玩世盗名

    唬人有理,恐吓无罪,吹出一身虚名,战五渣也能横行四方!
  • 尸毒来袭

    尸毒来袭

    人类为了更强大,居然用人类来做生化实验,一场噩梦来临了
  • 福妻驾到

    福妻驾到

    现代饭店彪悍老板娘魂穿古代。不分是非的极品婆婆?三年未归生死不明的丈夫?心狠手辣的阴毒亲戚?贪婪而好色的地主老财?吃上顿没下顿的贫困宭境?不怕不怕,神仙相助,一技在手,天下我有!且看现代张悦娘,如何身带福气玩转古代,开面馆、收小弟、左纳财富,右傍美男,共绘幸福生活大好蓝图!!!!快本新书《天媒地聘》已经上架开始销售,只要3.99元即可将整本书抱回家,你还等什么哪,赶紧点击下面的直通车,享受乐乐精心为您准备的美食盛宴吧!)
  • 无敌萌妻限量版

    无敌萌妻限量版

    他是C城翻手为云覆手为雨的南宫集团首席执行官,身家过亿,却偏偏被当成牛郎睡了,为报此仇,他势要将此人大卸八块拿去喂狗。她是一枚小小设计师,胸怀梦想,无奈现实骨感,可不小心睡了上司之后竟然走了狗屎运成为顶尖设计师!她抱着总裁大腿,感激涕零。为了看牢这个金大腿,她一路过关斩将,弃渣竹马,斗情敌,终于稳固自己总裁夫人的头衔。
  • 化风而去的女孩

    化风而去的女孩

    女孩,站在街头哭喊着“为什么一切不好的都发生在我身上,为什么!爸爸不要我了,妈妈离开了……我还有什么”她坠落了,从天堂的天使变成了地狱的恶魔……被朋友被判了,被爸爸丟弃了,她唯一的爱也被带走了,她还有什么?她就像是地狱的修罗就像曼珠沙华曼珠沙华的花语:传说中的引魂之花,冥界唯一的花。相传此花只开于黄泉,是黄泉路上唯一的风景与色彩。曼珠沙华的美,是妖异、灾难、死亡与分离的不祥之美,触目惊心的赤红,如火、如血。
  • 主宰之圣世记

    主宰之圣世记

    神秘男子力战神鬼佛魔,超生死,破六界,置身六道之外,不入轮回之中。降众神,灭万物,执掌九色霸道雷霆。为证得武道巅峰,舍身重生自踏轮回……少年皇甫奇出生天降神雷,自此经脉尽断,受尽亲人欺辱,不甘心的他雨中自杀,不料遭雷击中,神体觉醒,天赋异禀,成为了众人中的天才。且看皇甫奇闯过万千荆棘,一路高歌,斩妖孽,踏天才,一怒为红颜,成就主宰之道,创下巅峰圣世……
  • 年轻人成功必读的三十六计

    年轻人成功必读的三十六计

    本书以独特的视角和立意对古典36计谋作现代释析,融知识性、哲理性、趣味性于一体。
  • 蒹葭惊梦

    蒹葭惊梦

    在寂静的宇宙中,有种众多的生命星系,星系与星系之间因为宇宙场域的存在,将这些星系分割成了不同的时间和空间平面。每个不同的时间和空间平面只要有着生命的存在,便都演绎各自的文明。物理学将这种时间和空间平面称之为位面。俞尘位面便是地球的一个时间和空间位面,一个独特空间,它有着地球的科技,却是个人烟稀少没有阳光、没有春夏秋冬的世界。平静而空旷,如山如画如墨。这属于一个被遗弃的位面,史书记载着这个位面也曾极度繁荣,后来因为资源的耗尽,所有的人类都进入了更高的位面,而留下的人类不足以前的千分之一,都是些社会底层的老弱病残或者罪犯,几百年后,人类的科技愈发退步
  • 孙悟空之爱你一万年

    孙悟空之爱你一万年

    是人?是魔?是神?种族意识形态下却是仇恨,杀戮!三界千年一个劫数,千年已到,魔主重生,末世已近,会是神魔轮回吗?难道就没有一丝仁爱和正义的曙光吗?恩怨情仇,悲欢离合,爱过,就不想错过,若必须有个期限,希望是一万年!一边是战火践踏,暴力奴役,失去自由的三界,等着救世英雄出现!一边是倾尽深情,倾尽心血,共度生死的爱情,一别就是不再相见!孙悟空被迫作出残酷的抉择,是向左?是向右?幸运遇到你,却不幸生在这乱世!他最后选择……