登陆注册
15451600000008

第8章 7

It is evident also that in all the figures, whenever a proper syllogism does not result, if both the terms are affirmative or negative nothing necessary follows at all, but if one is affirmative, the other negative, and if the negative is stated universally, a syllogism always results relating the minor to the major term, e.g. if A belongs to all or some B, and B belongs to no C: for if the premisses are converted it is necessary that C does not belong to some A. Similarly also in the other figures: a syllogism always results by means of conversion. It is evident also that the substitution of an indefinite for a particular affirmative will effect the same syllogism in all the figures.

It is clear too that all the imperfect syllogisms are made perfect by means of the first figure. For all are brought to a conclusion either ostensively or per impossibile. In both ways the first figure is formed: if they are made perfect ostensively, because (as we saw) all are brought to a conclusion by means of conversion, and conversion produces the first figure: if they are proved per impossibile, because on the assumption of the false statement the syllogism comes about by means of the first figure, e.g. in the last figure, if A and B belong to all C, it follows that A belongs to some B: for if A belonged to no B, and B belongs to all C, A would belong to no C: but (as we stated) it belongs to all C. Similarly also with the rest.

It is possible also to reduce all syllogisms to the universal syllogisms in the first figure. Those in the second figure are clearly made perfect by these, though not all in the same way; the universal syllogisms are made perfect by converting the negative premiss, each of the particular syllogisms by reductio ad impossibile. In the first figure particular syllogisms are indeed made perfect by themselves, but it is possible also to prove them by means of the second figure, reducing them ad impossibile, e.g. if A belongs to all B, and B to some C, it follows that A belongs to some C. For if it belonged to no C, and belongs to all B, then B will belong to no C: this we know by means of the second figure. Similarly also demonstration will be possible in the case of the negative. For if A belongs to no B, and B belongs to some C, A will not belong to some C: for if it belonged to all C, and belongs to no B, then B will belong to no C: and this (as we saw) is the middle figure. Consequently, since all syllogisms in the middle figure can be reduced to universal syllogisms in the first figure, and since particular syllogisms in the first figure can be reduced to syllogisms in the middle figure, it is clear that particular syllogisms can be reduced to universal syllogisms in the first figure. Syllogisms in the third figure, if the terms are universal, are directly made perfect by means of those syllogisms; but, when one of the premisses is particular, by means of the particular syllogisms in the first figure: and these (we have seen) may be reduced to the universal syllogisms in the first figure: consequently also the particular syllogisms in the third figure may be so reduced. It is clear then that all syllogisms may be reduced to the universal syllogisms in the first figure.

We have stated then how syllogisms which prove that something belongs or does not belong to something else are constituted, both how syllogisms of the same figure are constituted in themselves, and how syllogisms of different figures are related to one another.

同类推荐
  • 儒增篇

    儒增篇

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 秋日题窦员外崇德里

    秋日题窦员外崇德里

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • The Alkahest

    The Alkahest

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 扁鹊心书

    扁鹊心书

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • New Chronicles of Rebecca

    New Chronicles of Rebecca

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
热门推荐
  • 恩怨两劫

    恩怨两劫

    “我给你名字,你跟我走,从此你是我的人,你敢吗?”“敢!”刚刚穿越到辉铎王朝的王微微在饥寒交迫的时刻遇到了秦曜,从那以后,她变成了秦府的二小姐秦素韵,从此以后命运的转轮缓缓开启……看穿越女如何在架空王朝成就一段倾世绝恋!
  • 位面往事:辣鸡

    位面往事:辣鸡

    第3号养鸡场的12万只鸡一夜之间全部暴毙,养鸡场老板与3号鸡场负责人也在次日离奇身亡,死状恐怖。前去办案的刑警队长臧南山,深入3号养鸡场内部,最终在鸡舍的角落中,发现了惊天的秘密……许多年后,这个位于中国偏僻山村养鸡场发生的诡事,被记载在了世界所有国家的史书及课本中。此事之前,谁都不可能会料到,全人类真正的浩劫,不是来自核战争,不是来自外星文明,而是来自一只小鸡仔的诞生。
  • 相思谋:妃常难娶

    相思谋:妃常难娶

    某日某王府张灯结彩,婚礼进行时,突然不知从哪冒出来一个小孩,对着新郎道:“爹爹,今天您的大婚之喜,娘亲让我来还一样东西。”说完提着手中的玉佩在新郎面前晃悠。此话一出,一府宾客哗然,然当大家看清这小孩与新郎如一个模子刻出来的面容时,顿时石化。此时某屋顶,一个绝色女子不耐烦的声音响起:“儿子,事情办完了我们走,别在那磨矶,耽误时间。”新郎一看屋顶上的女子,当下怒火攻心,扔下新娘就往女子所在的方向扑去,吼道:“女人,你给本王站住。”一场爱与被爱的追逐正式开始、、、、、、、
  • 生魂勿近

    生魂勿近

    别回头,鬼就在你的身后。叶墨被人害死,魂魄系其恶主。此后为了夺回一魂,而走入了一条另类的修行之路。
  • 木兰奇女传

    木兰奇女传

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 在异世界的不悠闲日子

    在异世界的不悠闲日子

    来到异世界成为一个富二代过着混吃等死的生活,蛮不错的。然而我运气不咋滴,摊上大事儿了,因为我长得萌嘛……唉!
  • 屌丝神仙逛都市

    屌丝神仙逛都市

    一个出生于1103年的人在得到一本残缺的修真秘籍之后,靠着自己的努力修炼到了渡劫期,谁知在渡劫时却灰飞烟灭。在阎王的照顾下,他带着意识转世,从而可以继续修炼。借助前世对自然的感悟,三岁半的他就修炼到了灵寂期。一次乌龙的绑架事件,将他领上了一条诡异、离奇、笑料百出的修真之旅。
  • 禁忌战魔

    禁忌战魔

    铁城之外,清屏山上一座茅屋之前,一龄正十八,本该意气风发,但却满脸颓废之气的少年正襟危坐在石桌前,桌子上摆放着一块刚烤好不久的家畜肉,香气逼人。在这少年正对面,一下人打扮的仆人不屑的看这少年,眼中尽是嫌弃“古邪少爷,今天是你的成人礼,这是家族让我送过来的礼品,趁热赶紧吃了吧”奴仆口里虽然叫着少爷二字,而言语举动之中却没有一丝的尊敬之意……
  • 时迁宫纪

    时迁宫纪

    这本书没有光环,除了宫廷外没有特定的主角,因为出现的每一个角色,都是这本书独特的存在,我只是用一个人贯穿了故事,所以没有光环,没有生死不离的痴心,没有刻骨铭心的爱情,没有完美的HE,有的只是波谲诡异,是争斗,是欲望。我希望用每一个角色和最平实的语言,展现最真实的宫廷。
  • 雷霆传记

    雷霆传记

    何谓:“仙?”何谓:“魔?”“一念成仙!一念成魔!”本书将描绘心中的一个仙侠世界...